If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-14x=49
We move all terms to the left:
7x^2-14x-(49)=0
a = 7; b = -14; c = -49;
Δ = b2-4ac
Δ = -142-4·7·(-49)
Δ = 1568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1568}=\sqrt{784*2}=\sqrt{784}*\sqrt{2}=28\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-28\sqrt{2}}{2*7}=\frac{14-28\sqrt{2}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+28\sqrt{2}}{2*7}=\frac{14+28\sqrt{2}}{14} $
| 5/3-2D=5/6d-d+3 | | 13y-8=3y | | 13-8=3y | | 12v-6+5v=-29 | | c+1/4=7/12 | | -25h=600 | | 3/4=165/x | | 12c=14 | | 4x+30=6x*20 | | 5-2d=13 | | 6x(1/2x)+3x=8 | | 2.5x+x=28 | | (17-5)(+6)=3x-12 | | 20+2x=5x-16 | | 2x4+5=6 | | 2x=4/5=6 | | -9(e-6)=18 | | 6k+1=9+8(k-5) | | 5x-15-15x-60=0 | | 13-2x=8+4x | | 9x2-24x=-20 | | 2e-5=6 | | 8x+8=10-4x | | 4x+3(x+4=5x+10 | | 26.8=8+4m | | -4(w+6)+3w=4w-24+3w | | 16x=12x+24 | | Y=-5.25x^2+63x+5 | | 1.75=x/7 | | (2x+1)(4x+1)(6x+1)(12x+1)=2 | | -x-2=+10 | | 3x-1/4+2/3=5-x/12 |